LOCAL BEHAVIOR AND GLOBAL EXISTENCE OF POSITIVE SOLUTIONS OF au − u u COMPORTEMENT LOCAL ET EXISTENCE GLOBALE DES SOLUTIONS POSITIVES DE au − u u

نویسنده

  • Steven D. TALIAFERRO
چکیده

– We study the behavior near the origin of C2 positive solutions u(x) of au − u u (∗) in a punctured neighborhood of the origin in R (n > 2) where the constants λ and a satisfy n n−2 < λ< n+2 n−2 and 0 < a < 1. We also study the existence of C 2 positive solutions of (∗) in R. In both cases we show that changing a from one value in the open interval (0,1) to another value in (0,1) can have a dramatic effect.  2002 Éditions scientifiques et médicales Elsevier SAS RÉSUMÉ. – On étudie le comportement prés de l’ origine des solutions positives de classe C2 u(x) de au − u u (∗) dans un voisinage épointé de l’ origine dans R (n > 2) où les constantes λ et a satisfont n n−2 < λ < n+2 n−2 et 0 < a < 1. On étudie aussi l’ existence de solutions positives de classe C 2 de (∗) dans R. Dans les deux cas nous montrons que changer la valeur de a dans l’intervalle ouvert (0,1) peut avoir un effet dramatique.  2002 Éditions scientifiques et médicales Elsevier SAS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Nonexistence of Global Positive Solutions to Nonlinear Diffusion Problems with Nonlinear Absorption through the Boundary

This paper deals with the existence and nonexistence of global positive solutions to ut = ∆ ln(1 + u) in Ω× (0,+∞), ∂ ln(1 + u) ∂n = √ 1 + u(ln(1 + u)) on ∂Ω× (0,+∞), and u(x, 0) = u0(x) in Ω. Here α ≥ 0 is a parameter, Ω ⊂ RN is a bounded smooth domain. After pointing out the mistakes in Global behavior of positive solutions to nonlinear diffusion problems with nonlinear absorption through the...

متن کامل

Global Existence and Asymptotic Behavior of Solutions for Some Nonlinear Hyperbolic Equation

The initial boundary value problem for a class of hyperbolic equation with nonlinear dissipative term u tt − n i1 ∂/∂x i |∂u/∂x i | p−2 ∂u/∂x i a|u t | q−2 u t b|u| r−2 u in a bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set in W 1,p 0 ΩΩ and show the asymptotic behavior of the global solutions through the use of an important l...

متن کامل

Local and global nonexistence of solutions to semilinear evolution equations

For a fixed p and σ > −1, such that p > max{1, σ + 1}, one main concern of this paper is to find sufficient conditions for non solvability of ut = −(−∆) β 2 u− V (x)u+ th(x)u +W (x, t), posed in ST := R × (0, T ), where 0 < T < +∞, (−∆) β 2 with 0 < β ≤ 2 is the β/2 fractional power of the −∆, and W (x, t) = tw(x) ≥ 0. The potential V satisfies lim sup|x|→+∞ |V (x)||x| < +∞, for some positive a...

متن کامل

Systems of Nonlinear Wave Equations with Damping and Supercritical Sources

We consider the local and global well-posedness of the coupled nonlinear wave equations u tt − ∆u + g 1 (u t) = f 1 (u, v) v tt − ∆v + g 2 (v t) = f 2 (u, v), in a bounded domain Ω ⊂ R n with a nonlinear Robin boundary condition on u and a zero boundary conditions on v. The nonlinearities f 1 (u, v) and f 2 (u, v) are with supercritical exponents representing strong sources, while g 1 (u t) and...

متن کامل

Local Well Posedness, Asymptotic Behavior and Asymptotic Bootstrapping for a Class of Semilinear Evolution Equations of the Second Order in Time

A class of semilinear evolution equations of the second order in time of the form utt+Au+μAut+Autt = f(u) is considered, where −A is the Dirichlet Laplacian, Ω is a smooth bounded domain in RN and f ∈ C1(R,R). A local well posedness result is proved in the Banach spacesW 1,p 0 (Ω)×W 1,p 0 (Ω) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies an addi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002